Licheng Zou's Curriculum Vitae

Contact Information

Email: lichengzou0509@gmail.com

Phone: +310616718944 Website: Personal Website

Education

09/2019-06/2023	BSc in Math and Applied math, Shanghai Jiao Tong University, China
09/2023-06/2025	MSc in Neurobiology, University of Amsterdam, Netherlands
(expected)	
08/2025-08/2028	PhD candidate, Max-Planck Institute for Dynamics and Self-organization, Ger-
(expected)	many

Research Interests

Theoretical/ computational neuroscience: multi-scale brain modelling, mean-field analysis on spiking neural networks.

Professional Experience

09/2021-09/2022	Bachelor Assistant, Shanghai Jiaotong University
	Supervisor: Prof. Songting Li, Prof. Douglas Zhou
09/2022 - 07/2023	Research Intern, U. Amsterdam
	Supervisor: Dr. Jorge Mejias
07/2023- $08/2024$	Research Intern, Centre de Recerca Mathematica
	Supervisor: Dr. Alex Roxin
09/2024-Now	Hybrid Research Intern, U. Amsterdam & U. Chicago & German Primate
•	Center
	Supervisors: Dr. Jorge Mejias, Dr. Jorge Jaramillo, Dr. Igor Kagan
01/2025-Now	Graduate Assistant, Max Planck Institute for Dynamics and Self-organization
,	Supervisor: Prof. Fred Wolf

Publications

 \bullet Synaptic plasticity facilitates oscillations in a V1 cortical column model with multiple interneuron types

Giulia Moreni, Licheng Zou, Cyriel Pennartz, Jorge Mejias Frontiers in Computational Neuroscience, 2025

Preprints

• Distributed evidence accumulation across macaque large-scale neocortical networks during perceptual decision making

Licheng Zou, Nicola Palomero-Gallagher, Douglas Zhou, Songting Li
, Jorge F Mejias $bioRxiv,\,2023$

• Representational drift as the consequence of ongoing memory storage Federico Devalle, Licheng Zou, Gloria Cecchini, Alex Roxin

bioRxiv, 2024
Efficient laminar-distributed interactions and orientation selectivity in the mouse V1

cortical column Licheng Zou, Giulia Moreni, Cyriel Pennartz, Jorge Mejias bioRxiv, 2024 • Computational mechanisms of representational drift and odor perception in rodent olfactory systems

Licheng Zou, Alex Roxin In preparation, 2024

Conference Presentations

- Computational mechanisms of representational drift and odor perception in rodent olfactory systems, Poster talk, Bernstein 2024, Frankfurt
- Computational mechanisms of representational drift and odor perception in rodent olfactory systems, Poster talk, Barccsyn 2024, Barcelona
- Representational drift as the consequence of ongoing memory storage, Poster talk, Cosyne 2024, Lisbon
- What's going on in representational drift, Conference talk 20 mins, Donders Discussion 2023, Nijmegen

Workshop Attendance

- 2024 Cold Spring Harbor Asia summer course, 'Computational and Cognitive Neuroscience', Suzhou
- EBRAINS brain simulation workshop 2024, Bilbao
- Hybrid workshop BCN 2024, 'From EEG and related potentials to connectivity and source modeling', Barcelona
- SJTU computational neuroscience winter school 2022, 2023, Shanghai

Service

Reviewer for $Physical\ Review\ E$

Languages

Chinese (native), English (fluent), Spanish (basic).